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In recent years businesses and organizations have 

experienced an increase in the occurrence of IT-security 

related threats, causing the compromise of sensitive 

information, disruption of everyday operations, and 

ultimately financial damage. Meanwhile, these attacks have 

become more varied and sophisticated, making them 

increasingly hard to detect. In order to address these issues 

we initiated the GLACIER1-project [1]. As a part of the 

project we created an architecture, which can be realized as 

an in-house operated SIEM system for SMEs. In addition to 

SIEM-specific tasks like network data collection, 

normalization, enrichment and storage, the systems main 

purpose is to supply data to advanced multidimensional 

analysis algorithms. These provide a novel way to reliably 

detect security-related anomalies. Found anomalies are 

displayed in a GUI, which allows giving feedback for tuning 

the anomaly detection algorithm, while also providing access 

to network actors for quick incidence responses. The 

architecture can be implemented using exclusively free, 

open-source components and is suitable for both 

information technology (IT) and operational technology 

(OT) environments. 

Keywords: SIEM, intrusion detection, security 
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I. INTRODUCTION 

The increasing integration of traditional IT 

components and production/control systems (operational 

technology, OT) creates new risks that companies have to 

face. So, in addition to state-of-the-art security systems 

such as firewalls and malware protection, log and 

monitoring systems are becoming increasingly important. 

This is because every company must assume that 

professional attackers can overcome the existing perimeter 

protection with appropriate effort and that the malicious 

code used is not always reliably detected. The number and 

complexity of cyber-attacks is constantly increasing, as a 

BITKOM study [2] has shown. According to this study, 

70% of the German economy is affected by digital attacks, 

compared to 43% two years ago. Sensitive data has been 

stolen from one in five companies, although leaks like 

 
1 GLACIER = Attack detection through multidimensional analysis of 

security-relevant data streams 

these can probably not always be detected, so the number 

of unreported cases will likely be higher. This is because 

most companies have not established sufficient IDS/IPS or 

SIEM systems yet. 

The intrusion of an attacker can only be detected 

through unusual system or application behavior and 

abnormal network communication. However, detection 

typically also requires that the data from different systems 

be aggregated and correlated in an analysis system. The 

large data volumes involved pose particular challenges. 

Due to the poor availability of current test data sets, new 

solutions cannot be evaluated comprehensively, which 

makes it massively more difficult to compare algorithms 

and products. The lack of sufficient data sets also leads to 

the fact that learned models for anomaly detection are not 

transferable. In addition, attack scenarios continue to 

evolve, making the definition of the attack class obsolete. 

Some attacks can take months to unfold. They are also 

difficult to model. The problems for intrusion detection 

systems (IDS) outlined in [3] can therefore be generalized 

to the detection of security incidents. 

The goal of a SIEM system, on the other hand, should 

be to be able to correlate protocols from heterogeneous 

sources in order to provide the Security Operation Center 

(SOC) staff with a holistic network overview. They should 

therefore be regarded as a further development of 

conventional IDS/IPS systems. In order to prevent them 

from suffering the same niche existence as their 

predecessors, the focus should be on user-friendliness and 

the detection of relevant anomalies. It is precisely the 

number of ”false positives” in IDS/IPS systems that has 

led to them being used relatively little in today’s 

companies. However, since anomaly detection is currently 

still signature-based in most cases, new types of attacks 

are often noticed too late or not at all. Signature-based 

approaches determine anomalies by observing well-

known attack scenarios (signatures) and are thus not 

capable of detecting previously unknown attack types. 

The GLACIER project tries to address all of the 

aforementioned in an integrated system. In particular it 

will provide the following features: 

a. Unification and consolidation of log information 

b. Horizontal scalability 



c. Anomaly detection for automated intrusion 

detection 

d. Development of novel multidimensional anomaly 

detection algorithms 

e. Visualization of the anomaly results 

II. RELEATED WORK 

In the field of IT security, research has long been 

conducted on intrusion detection systems (IDS), which 

examine network data and recognize attack patterns [4]. A 

distinction can mainly be made between signature-based 

and anomaly-based methods. Signatures are limited to 

previously known and recorded attack scenarios, while 

anomaly-based methods analyse normal behaviour and 

detect deviations, and can thus also detect previously 

unknown attacks [5]. However, anomaly-based methods 

usually have the disadvantage of producing a high number 

of false positives. 

However, it has long been clear that a more 

comprehensive view of all security-relevant data is 

necessary in order to be able to identify more complex 

threat scenarios. SIEM systems are used for this purpose, 

which perform precisely this data integration and 

evaluation. Static rules or anomaly detection can also be 

used at this level. In contrast to IDS, SIEM must generally 

be able to handle much more heterogeneous data and 

larger data volumes [6]. There are already several 

publications (e.g. [7], [8], [9]) that use standard data 

mining methods such as cluster analysis to improve attack 

detection. However, they all have in common that they all 

start from the homogeneous database of an IDS system 

and cannot be applied to heterogeneous data, as is the case 

in SIEM-like systems. 

Independently of the application in IT security, 

research has long been conducted on concepts for 

anomaly detection, see e.g. [10]. In addition to the basic 

techniques, we are particularly interested in methods that 

can detect contextual or collective anomalies (see [11]). 

An example is the star-cubing method presented in [12], 

which efficiently calculates all cube cells that exceed a 

certain threshold value. However, these methods must also 

be able to be used in data streams and must be efficient 

enough to enable online detection of incidents. 

Furthermore, the cells of a cube can also be interpreted as 

time series, which means that suitable methods for time 

series anomaly detection (see [13]) can be applied to 

different groupings of data. The multidimensional 

anaomaly detection methods used in this project are based 

on the algorithm in [20]. 

In the OLAP environment, there are also various 

studies on the multidimensional visualization of data 

cubes [14] [15] [16], mostly using established methods for 

the visualization of multivariate data, such as scatter plots, 

radar charts or parallel coordinates. The challenge in the 

GLACIER project is therefore on the one hand to present 

multidimensional data from time-dependent data streams 

in a comprehensible way, and on the other hand to find 

visualization approaches that take into account the mental 

models of security analysts. Publications that apply the 

above advanced representations to network security data 

are hard to find so far. Especially the combination with the 

previously mentioned views has not been researched yet. 

The market for commercial products offers a variety of 

options in the SIEM area. As the manufacturers of 

commercial systems have also recognized that systems 

with fixed rules and regulations (first generation SIEM) 

are too inflexible and too personnel-intensive in 

maintenance and development from the customer’s point 

of view, the following section looks at systems and 

services related to modern SIEM systems (second 

generation SIEM) grouped by properties / methods used: 

a. Static sets of rules maintained by the provider that 

compare against dynamic lists of suspicious 

objects (e.g. IP addresses, URLs, hashes of binary 

code), e.g. IBM QRadar SIEM, Tenable LCE and 

McAfee Enterprise Security SIEM. The sets of 

rules are renewed in the course of updates, e.g. 

monthly, the dynamic lists much more frequently. 

The lists of suspicious objects or the behavior 

patterns depicted in the rules (”threat 

intelligence”) are obtained by the manufacturers 

through a wide variety of methods (e.g. manual 

searches, honeypots, statistical analyses across 

several customers, analysis of unstructured texts 

such as postings in darknet).  

b. Statistical time series analysis of individual 

metrics (e.g. user numbers, network bandwidth) to 

determine the development over time as a ”normal 

state”, dynamically update it and then detect 

significant deviations. The monitored metrics 

(numerical values) and threshold values for 

deviations must be defined by the IT 

administrator. This capability is found in many 

commercial products, including IBM QRadar 

SIEM.  

c. User and Entity Behavior Analysis (UEBA) 

creates models of normal behavior for individual 

users or components such as IP addresses, servers, 

applications by means of statistical analysis or 

learning methods in order to detect deviations. 

According to the Gartner analysis [17], machine 

learning methods (supervised / unsupervised ML) 

are increasingly used in addition to rule-based and 

statistical approaches. These techniques are used 

in several products (e.g. IBM QRadar UBA App, 

LogRhythm UEBA, ArcSight UBA, DarkTrace 

Enterprise. 

GLACIER is looking in detail at the third option for 

developing an open source based SIEM solution. 

III. APPROACH 

This section will present a description of the 

architecture and how it achieves the goals outlined in 

section 1, leading with an overview of the architecture, 



followed by detailed descriptions of its individual parts. 

Whenever there is a planned implementation for a concept 

or component it will be mentioned accordingly. 

The architecture ensures horizontal scalability by 

designing each component (excluding GUIs) to be suitable 

for containerization, which we intend to realize using 

Docker. In the graphics rounded rectangles depict 

components that run inside Docker. Layered rounded 

rectangles indicate that there are multiple parallel 

implementations of the component. Dotted rectangles 

denote data flow between components, while control flow 

is mostly omitted. If control flow is shown it is 

represented by dotted ellipses. 

A. Overview 

This section presents an overview of GLACIER major 

component groups, as well as the surrounding systems, 

and their interaction with each other. They are visualized 

in figure 1.  

 

Figure 1.  Overview of component groups of the GLACIER 

architecture 

In Data Collection heterogeneous data is gathered 

from Dynamic Sources and consolidated as necessary for 

security analysis. These sources can be any network 

component that produces events suitable for monitoring, 

like hosts, firewalls or OT components. Events are 

normalized to a common format, enriched and archived. 

During enrichment the system utilizes context information 

from Static Sources, like LDAP servers, CMDBs or IP 

geolocation services. Archived data can be viewed using 

the Audit GUI. 

Enriched data is forwarded to Data Analysis, where it 

is analyzed for anomalies. These can be visualized in the 

SIEM GUI, alongside training data and learned models. 

The GUI also allows giving feedback to the analysis 

algorithms and gives users ways to immediately react to 

incidents by engaging Actors in the network, like NAC 

interfaces or CVE scanners. In addition, Automatic Actors 

can be triggered, e.g. to send notifications to security staff 

without user involvement. 

All GLACIER components are configured and 

supervised by the management. In addition to 

administration, the Management GUI allows using the 

Replay functionality to recreate previously encountered 

situations in the network by replaying events. This part of 

GLACIER will not be included in the final version of the 

system, since it mostly serves conducting experiments to 

evaluate the performance of the data processing chain and 

the analysis algorithms. 

B. Data Collection 

This section will describe the components of the data 

collection group, as shown in figure 2. The components in 

this part of the system collect event data from different 

points in the network, pre-process and archive it, and 

finally pass it on to data analysis. 

At many points within the architecture Brokers are 

used to buffer events messages in order to decouple 

different stages of data processing, thus enabling 

horizontal scalability. These brokers do not necessarily 

run in separate containers, instead they will probably be 

realized as different topics in the same RabbitMQ 

instance. The message queues within the brokers hold 

their messages in memory to keep throughput as high as 

possible, unless they are flagged as important, in which 

case they will be stored to disc as well. 

Archivers are components that insert data into 

databases. For each new insertion they test whether the 

data is already present and overwrite it if it is. This 

behaviour is different for the Raw Archiver, which has to 

avoid overwriting enriched events with their raw 

counterparts in the archive. 

 

Figure 2.  Components of the data collection process 

Each dynamic source has an Agent collecting and 

forwarding its data, converting any non-textual data to a 

text based, structured format in the process. This format 

will be JSON, however at this stage the JSON objects will 

be mostly flat, with most of the effort to structure them 

will be concentrated at the normalization stage. Agents 

can be actively polling for data or passively receiving it, 

depending on the source type. They will also summarize 

discard certain events according to configuration to 

minimize the load on the system at the source. To guide 

the normalization process, agents append their own type to 

events. 

The Raw Filter gathers the raw events produced by the 

agents, giving each event an ID which uniquely identifies 

it across the remainder of the system. Additionally it 

provides a second opportunity for filtering the event 

stream. Most notably it holds a whitelist of agents known 



to the system, discarding events stemming from 

unregistered sources. 

Each agent, or agent type, has a Normalizer tasked 

with transforming its JSON output into a common format, 

thereby integrating data from all sources, while enforcing 

data quality constraints. We intend to use the Elastic 

Common Schema (ECS) for this purpose. Each normalizer 

appends its on type and a timestamp to the normalized 

event to make the normalization process reversible and 

repeatable, which is useful when normalizers or the data 

format are changed or when errors occur in the process. 

The Enricher fetches context information (i.e. user 

related data from ldap or ad, dns information or ip/mac 

relation) and attaches it to events, which serves both 

completing the attribute list of events and creating 

dimensional hierarchies on top of some of these attributes. 

Similar to the normalizers it appends information about 

the enrichment process to event to make it repeatable. 

To reduce the load on static sources, enrichers store 

the most recent history of context data they retrieve in the 

Cache. This cache will be implemented as a Redis 

instance. In the case that events need to be filtered out 

before analysis on the basis of information that is 

available only after enrichment, the Enriched Filter can be 

configured to do so. 

The Asset Listener gathers enriched event data and 

infers a list of active assets in the network, which are then 

forwarded to the analysis database for display in the SIEM 

GUI. Long term storage of events is handled by the 

Archive. It stores all events passing through the system, 

both in raw format and after enrichment and will be 

realized as an ElasticSearch instance. 

The data in the archive can be viewed using the Audit 

GUI. This can serve for compliance, forensics or simply 

for double checking analysis results. Kibana, being the 

part of the ELK stack, is a natural choice for an 

implementation. 

C. Data Analysis 

The components in this part of the system are tasked 

with analyzing the gathered events for anomalies and 

presenting them to users. This component group is 

displayed in figure 3. 

Events enter the data analysis chain through the Event 

Store. This database contains a relatively short history of 

fully enriched events and offers high-bandwidth access for 

near real-time analysis. This database will be realized 

using ElasticSearch as well. 

The Event Store Cleaner is an active component for 

deleting any entries in the event store that lie outside the 

desired time window for analysis. Any data surrounding 

data analysis results is stored in the Analysis Database. It 

will be implemented using PostgreSQL. 

The component responsible for finding anomalies in 

the event stream, as well as hosting experiments with 

anomaly detection algorithms, is the Analysis Engine. 

Found anomalies are assigned an anomaly score and an 

ID, and are treated as incidents in the later parts of data 

analysis. A notification is sent for each incident to trigger 

automatic actors. Additionally, a flag in each event is read 

on input to determine whether it represents an incident 

independently, like for example antivirus software 

notifications. The analysis engine utilizes novel machine 

learning algorithms, which use OLAP cubes as underlying 

data structure. So in order to analyze events, they are first 

separated into time slices and aggregated to cubes. 

Machine learning models, cubed training and inference 

data and user feedback are stored in the analysis database 

and retrieved if needed. This is required especially in the 

case that the models need to be retrained on updated 

training data or new feedback. 

 

Figure 3.  Components of the data analysis chain 

The Post Processor takes incident data produced by 

the analysis engine and enriches it for display in the SIEM 

GUI, which is partly achieved by querying the archive 

database and by incorporating user feedback. Fully 

processed incidents are stored in the analysis database. 

Incidents are visualized in the SIEM GUI. In addition 

to showing the information describing an incident, it is 

possible to access related incidents, i.e. incidents that 

share at least one attribute value with one another. This 

can be cross-referenced with a visualization of network 

assets, which is built from the asset data provided by the 

asset listener. The GUI gives users recommendations for 

reacting incidents and access to actors which carry out the 

reactions, for example by moving a host to quarantine. 

Users can also give feedback to the analysis engine on 

each incident, which can include adjusting the anomaly 

score to a desired value or tagging incidents with labels 

which will be shown as descriptive text on similar 

incidents in the future. The history of actions users take in 

conjunction with an incident are stored as a ticket in the 

analysis database. 

IV. USE CASES 

For Use Cases there can be different actors with 

different requirements for a system. For example, systems 

with different authorization levels can distinguish between 

administrators and users who can perform disjoint actions 

and would therefore have completely different use cases. 

In the system used here, a distinction into different actors 

within a company does not seem to make sense, since the 

users can always perform the same actions. Only the goals 

of the system can differ, but it can be assumed that the 

overlaps are so strong that no further distinction is 



necessary. An example would be the use of the system by 

an experienced administrator and a rather inexperienced 

administrator. Due to the self-learning GUI, the actual use 

of the interface might differ, but the requirements for the 

system do not differ significantly. The use cases cover the 

use of the system, advantages of using the system and 

economic aspects. They result from the following 

requirements: 

a. Fulfill security requirements in order to be 

legally secure 

b. Take IT security measures quickly and easily 

with low costs and little know-how 

c. Detect threats to remove vulnerabilities 

d. Perform active scans to assess the current threat 

situation 

e. Carry out passive monitoring in order to be 

alerted to dangers and be able to react 

f. Access historical events to create and evaluate 

statistics 

g. Resource-saving monitoring so as not to 

influence the stability and speed of the network 

h. Perform quick scans to investigate current threats 

on the network or to initiate investigations in 

case of a specific incident 

i. Continuous monitoring to detect long-term 

threats 

j. Easy to understand and use GUI to quickly 

identify risks and changes 

k. Central control and coordination function to 

minimize the support effort 

l. Aggregate information to understand risks, 

incidents and vulnerabilities 

m. Generate understandable recommendations for 

action so that you can immediately decide how to 

react to an incident 

n. Useability in OT and/or IT networks 

o. Receive regular reports to assess the current 

status and compare it with older reports 

p. Respond promptly to threats to meet security 

requirements 

The requirements thus describe the behavior of the 

system in an abstract way without dealing with technical 

aspects. From these, however, the following technical use 

cases could be defined: 

a. Use Case 1: Definition of communication rules 

(hosts, networks, time restrictions) for detecting 

violations 

b. Use Case 2: Analysis of logs (Windows event 

logs and syslog) 

c. Use Case 3: File integrity monitoring (access via 

SSH or agents on the corresponding system) 

d. Use Case 4: Detection of failed SSH logins  

e. Use Case 5: Vulnerability Scan 

f. Use Case 6: Malware detection in network 

communication 

g. Use Case 7: Login attempts on Windows server 

systems 

h. Use Case 8: Detecting new network connections  

i. Use Case 9: Detecting new protocols within the 

network 

These user scenarios originate from associated 

partners of the GLACIER project and were compiled in 

the course of the analysis of the current state and 

requirements definition. The GLACIER architecture lives 

from the multitude of its use case scenarios. The more 

scenarios are implemented, the more incidents can be 

detected and displayed in the SIEM-GUI. 

At this point as a practical example use case 6 

(malware detection) shall be detailed in order to illustrate 

the feasibility of implementation of this use case and at the 

same time motivate the GLACIER system architecture as 

presented earlier in this chapter. 

Malware Detection in network communication has 

already been implemented in several products. However, 

most of these systems attempt to identify malware by 

matching the actual network traffic with well-known 

malware attack patterns. This approach works well for 

known attacks, however it will never be able to identify 

previously unknown and thus new kinds of attacks. From 

a risk perspective such novel attacks constitute the most 

dangerous type of attack and thus high priority should be 

given to detect those. In the GLACIER system such novel 

attack types shall be identified by realizing them as 

deviations from the regular system behavior, in this case 

network communication. For this purpose, the system 

needs to be able to learn the regular system behavior over 

a period of time and then a near real-time check for 

deviations can be realized. 

In terms of the high-level architecture of figure 1 the 

Data Analysis component will be responsible for learning 

the regular system behavior as well as for the online 

detection of deviations. In order to learn the regular 

system behavior as fast as possible, the Replay component 

can be used to feed the system with historical records of 

observed system usage patterns faster than in real time so 

that the Analysis component can learn the patterns fast. 

Technically, this is implemented by feeding the historical 

usage data into the Data Collection component and 

propagating those to the Analysis component as if they 

were actual records. In order to be able to use the learned 

regular behavior to detect deviations the actual network 

usage data is observed and consolidated in the Data 

Collection component and then forwarded to the analysis 

component for detection. 

Looking into more detail into the Data Collection 

component for this use case (cf. fig. 2) there will be a need 

to use static information about the network (e. g. user 

related information from LDAP) to be monitored as well 

as dynamic information (e. g. actual network connections 

and flows) in order to both learn the regular behavior and 

detect deviations. Most important are dynamic data 

sources that provide basic information about the current 

usage of the network, e. g. a login event to a specific 

machine. Based on log information provided by the 



sources events can be forwarded to the Replay component 

to record them for future training phases. If the system is 

in detection mode, these events can be filtered for 

relevance in order to reduce the load on the analysis 

component, e. g. information for unimportant machines 

might be dropped here. After normalizing the remaining 

events into a unified format suitable for the analysis 

component, the events might be enriched. Static data is 

fed into the system via the Enricher which is able to 

correlate this information with dynamic events. This 

might be required to match actual login events with the 

(static) priority of the user on that machine. 

Enriched events with such static information can 

thereafter be forwarded to the analysis component by 

means of the Event Store Broker which provides them to 

the Asset Listener to be supplied to the Event Store (cf. 

fig. 3) which is the foundation for the Analysis Engine. 

The Analysis Engine can now check individual events or 

groups of events against the regular system behavior 

learned earlier and stored in the analysis database in order 

to detect potential abnormalities. In case potential issues 

have been detected, e. g. login and external data transfer 

from a server that is usually only accessed internally, the 

engine will create an Incident since a potential malware 

attack has been detected which needs to be either 

examined further by a knowledgeable security operator 

via the SIEM GUI or requires automated processing (e. g. 

disconnection the server from the public network) by 

Automated Actors. In addition, the SIEM GUI can be used 

to collect feedback regarding the quality of the message 

created with this incident in order to continuously improve 

the analysis component.  

In order to learn the regular system behavior initially, 

raw events can be propagated to the management and 

replay component for a certain amount of time to be 

stored in the Replay Archive (cf. fig. 4). After sufficient 

data collection of raw events to be able to describe system 

behavior properly, the data set stored in the Replay 

Archive can be used to start training a new 

multidimensional system behavior model from the 

Management GUI with help of the Replay Controller. In 

this case, the analysis component is not used for actual 

detection but to learn the regular system behavior. The 

data processing pipeline, however, is similar to the 

detection case detailed above. 

As a conclusion, other use cases can be handled by the 

system in a similar manner. To cover a wide spectrum of 

use cases the model for regular system behavior should be 

as diverse and specific as possible. This requires many 

different data sources for events to be integrated in the 

collection component explaining the need for a highly 

scalable architecture at this end. 

V. RESULTS OF EXPERIMENTS 

To validate the developed architecture, tests were carried 

out in a real company environment. On the one hand, 

these tests served to perform functionality tests and, on 

the other hand, to minimize possible programming errors. 

In addition, the anomaly detection could be tested for its 

efficiency. Figure 4 shows the setup in the company 

network. 

 

Figure 4.  Test network structure 

The tests were performed according to a specific scheme 

in order to obtain unambiguous results: 

a. Running the installation script 

b. Creating networks for asset management 

c. Starting an vulnerability scan 

d. Monitoring the components of availability  

e. Collecting data using intrusion detection 

component 

f. Starting the analysis engine (one week later) 

g. Adjusting settings for the analysis algorithm and 

restarting with new training data from an entire 

week 

h. Improving the analysis and restarting with 

training data from four weeks 

i. Test of static analysis (define rules and create 

rule violations) 

The results can be sorted into different categories: 

analysis engine, static analysis, vulnerability scan, and 

asset management. 

In the Analysis Engine, the statements of most tickets 

refered to unusually high or low data traffic at certain 

times. Currently, there are still relatively many 

anomalies. This can be corrected with more training data 

and other settings. Furthermore, the Static Analysis still 

generates too many duplicate incidents (tickets). For 

example, a connection to an IP address was not allowed, 

which was specified via a rule. Instead of generating only 

one incident, 70 tickets were written during the tests. 

Additionally, the vulnerability analysis generated tickets 

that point to CVE vulnerabilities. All CVE vulnerabilities 

that were known were found. All of them were non-

critical. Asset Management successfully captured the 

assets in the network. The ports and protocols used were 

shown per asset. Tickets referenced the assets found and 

could be used to track anomalies. 

Overall, the tests showed that the SIEM architecture 

worked with the self-developed analysis engine well 

enough. However, too many tickets were still generated, 

which is an area for improvement. Also, duplicate tickets 

should be avoided in the future by means of adding a 

duplicate detection mechanism early on. In addition, it is 

also necessary to keep in mind the amount of data 



generated, which is necessary for the analysis. This is 

particularly important as data traffic will grow faster with 

usage of more advanced hardware components in the 

future. 

VI. CONCLUSIONS 

The architecture presented in the previous section will 

provide the required features for security-based anomaly 

detection in IT and OT environments as presented in 

section 1. For the data collection chain a vertical subset of 

the planned components has already been completed, 

yielding valuable insights for realizing the remaining ones. 

In particular, to improve anomaly detection results, more 

sensors have to be added to the system to provide further 

options for describing the normal system state and in 

consequence analyze potential deviations. This is true for 

both office as well as industrial settings. 

In the data analysis component group the focus in 

future developments will be on improving the analysis 

engine at its core. An initial version of the analysis engine 

has already been implemented that uses multidimensional 

cube-based analysis of data to detect anomalies similar to 

the algorithm in [20]. This component has to be extended 

and adapted to different event types, particularly for 

industrial scenarios, and also the analysis algorithms need 

to be improved. A systematic evaluation of the algorithms 

on a rich set of event types in traditional IT environments 

is required for this. More realistic and comprehensive 

training data sets will also be essential for improving the 

analysis component. 

In summary, we can conclude that the suggested 

system architecture is a good step forward towards 

achieving a security incident analysis system which can 

flexibly adjust to changing system behaviour due to its 

anomaly detection based approach. By integrating 

information from an arbitrarily wide range of input 

sensors and by using novel multidimensional anomaly 

detection algorithms the system is able to detect 

modifications that could not have been detected 

previously. In addition the systems ability to be scaled 

horizontally facilitates analysis of very large sets of input 

data. Finally, the SIEM GUI can display complex analysis 

results as well as context data to security operators in an 

easy-to-use manner, thereby helping them to address 

threats effectively. 
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