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Abstract — Advanced Persistent Threats (APTs) are a
growing and increasingly prevalent threat. Current detection
systems focus primarily on individual procedures and create
alerts on this foundation. To effectively detect APT attacks,
which rarely consist of single activities, individual alerts
must be correlated to comprehensively encapsulate APT
activity and provide better situational awareness to the
operators. We use this to initiate targeted and proactive
countermeasures and thus improve overall security. This
paper presents a correlation engine that uses alarms from
standard rule-based systems and correlates them with each
other. We evaluate the proposed solution using an APT
scenario as an example and discuss the advantages and
disadvantages of this approach. We argue that the fast,
simple implementation, which is an add-on to SIEM, must
be considered when evaluating the limited informative value
of rule-based systems in the face of zero-day exploits or even
sophisticated living-off-the-land attacks.
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I. INTRODUCTION

Advanced Persistent Threats (APTs) [1] are a growing
concern for organizations of all sizes, as they pose a
significant risk to their operations and reputation. The
motivation of an attacker can be difficult to interpret, and
organizations cannot rely on the assumption that they will
not be targeted. Hence, all organizations must do their best
to protect themselves from potential threats to ensure the
continuity of their operations.

However, small and medium-sized enterprises (SMEs)
face unique challenges in achieving effective cyber de-
fense, as they may lack the necessary resources and
the management motivation to invest in such solutions.
Managed service solutions offer a practical solution to
this issue by utilizing commercial off-the-shelf (COTS)
data in a generalizable manner, making the cost of pro-
tection more predictable and manageable. This is also the
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area of existing solutions, such as Security Information
Event Management (SIEM) systems, which specialize in
traditional attacks.

The current state of the APT, as drawn from recent
threat reports from the cybersecurity community [2]–
[5], shows an evolution of the cybercrime ecosystem
towards an industrialized space. This means that an end-
to-end cyberattack may not originate from the same
threat actor, but rather from multiple, as is the example
of Ransomware-as-a-service. Specialized groups, such as
initial access brokers [6] sell their services online, or even
offer subscription based services. As such, detecting APT
activity transcends stopping a single adversary poised on
inflicting damage.

Rule-based systems, in particular, are well suited for
protection against APTs because they extract indicators of
compromise (IoC) from previously generated cyber threat
intelligence, enabling a more targeted defense against
specific attacks that are often a subset of APT end-to-end
malicious activity. Unlike more advanced methods, such
as artificial intelligence-based solutions, rule-based sys-
tems mostly do not rely on the normal behavior of a target
area as a basis for threat detection. Despite their general
volatility, their field of applicability is wide and cross
organizational, since there is no retraining requirement,
as is the case with AI-based methods. Furthermore, AI-
based methods are in the developmental stage concerning
APT detection and are not yet suitable for operational
use. Only recently, in March 2022, an AI system using
fuzzy hashing and deep learning was able to detect a
neverbefore seen malware [7], a first, but important
achievement towards AI powered cyberdefense.

Given that well-equipped APTs often operate using
known tactics, techniques, and procedures (TTPs) and
may utilize known patterns, rule-based systems have the
potential to detect APT attackers alongside more tradi-
tional attackers effectively. The limitations of these meth-
ods will be discussed in detail later in this paper. However,



the advantage is a comprehensive defense against known
attack patterns, with a manageable level of administration
that can be outsourced through managed services.

The approach we propose is based on alarm correlation.
Alarms are generated from different rule-based systems
and correlated with each other via a correlation engine so
that serious incidents can be considered in a prioritized
manner.

The research questions for this study are:
• How can existing rule-based systems be adapted

to the requirements of APT attacks by correlating
events?

• What is the trade-off of using rule-based systems in
terms of APT detection?

The main contribution of the work is the investigation
of existing rule-based methods in terms of the necessary
adaptations to meet the increased requirements for APT
attack detection. The solution approach, the hierarchical
correlation of different rule-based detection engines, is
evaluated practically, using an exemplary APT scenario.
Furthermore, we discuss the advantages and disadvan-
tages of the implementation and give an outlook for the
further development in view of the new threat situation.

The remaining structure of the paper is as follows:
Section II presents the related work in this line of research
and argues our differentiating novelty. Section III details
our methodological approach in detail, the technology
and infrastructure that is used, the analytical methods, the
threat model, and the exemplary attack scenario. Section
IV presents the selected ruleset and attack platform and
finaly, Section V contains our concluding remarks.

II. RELATED WORK

There are different approaches in the field of APT
attack detection, which we briefly present here. On one
hand, there are approaches that try to pin APT attacks
down to a specific point of the attack. Exemplary works
for this approach are references [8]–[10]. [8] tries to
detect APTs at the DNS level, [9] with malware detection
and [10] by identifying command and control communi-
cation. These approaches do not cover the versatility of
an APT and reduce a complex problem to one step, such
as the initial access, which does not always have to be
identifiable.

Another category that inherently maps correlations in
the data structure are graph-based approaches, which can
have different characteristics. For instance, Sleuth [11]
uses a rule set to map the normal behavior of the
system from provenance graphs to graph data and detects
deviations accordingly, or threaTrace [12], which detects
anomalies through Graph Neural Networks. In addition
to provenance graphs, knowledge graphs can also be
used to associate assets with events in the system. Here,
the work [13] is an example, which builds an entire
knowledge graph, and then uses rules to view this entire
abundance of knowledge to identify APT attacks.

Methodologically closer to our approach are hierar-
chically arranged rule systems, such as [14] and [15].
Both systems use a hierarchical concept of rules to
bring insights from log information to a cyber-kill-chain
representation.

In addition to hierarchical control systems, there is an-
other class of systems that correlate existing alarms. These
include, among others, [16]–[18]. NoDoze [16] aims to
reduce false positive alarms by generating dependency
graphs from existing alarms. However, this approach is
based on graph data to generate the dependency graphs
afterwards, while we create correlations based on alerts
only, with no intermediate steps. Reference [17] works
on the alert correlation of IP addresses. The authors use
a multi-step Markov property process. They use only the
IP address to create correlations.

The closest to our work that we could identify is [18],
where an approach similar to ours with different detection
modules and a subsequent correlation of the individual
events is taken. They use a Hidden Markov Model,
whereas we rely on a simpler form of feature correlation.
Additionally, our method does not require training the
model on normal behavior data. Another key difference
is that we do not solely consider network data, but the
APT attack holistically, i.e., host data as well.

Overall, we differentiate ourselves from related work in
that we focus on the requirements of small and medium-
sized enterprises and try to address the high requirements
of APT attack detection as best as possible. Therefore, we
build on existing infrastructure as much as possible, i.e.,
by adding an extension to a SIEM system. The overarch-
ing goal is to make correlations simple and customizable,
so as to increase the cost to those APTs on the lower
spectrum of resources and capabilities, who may lack the
agility to rapidly change their TTPs frequently.

In this research, we try to overcome some limitations
of pure rule-based systems by means of an incremental
model which can be easily integrated with state-of-the-art
SIEM systems in the market. It enables real-time analysis
of system and network levels alerts. The correlation
engine correlates APT steps based on high-level tactical
tags in addition to technique tags from MITRE ATT&CK
to support the generalizability of the approach because
it is almost impossible to enumerate all APT scenarios
in technique level granularity. We employ a SIEM which
facilitates the contextualization of alerts because SIEMs
have already information about victim assets and users.
We can define our own rules (simple, statistical, anomaly
detection) to create low-level alerts. Most prominently,
our approach does not require a time window threshold
for the correlation of alerts. Instead, alerts with similar
identifiers (e.g., hostname, IP address, port numbers, user
info) can be even correlated years later.



III. METHODOLOGY

We developed a detection method and then established
a virtual environment to test our proposed approach.
The kill-chain model was adapted to understand the
characteristics and behaviors of an attack and design a
detection framework. Operating system audit logs and
network traffic were collected and used by the detection
framework. Three levels of abstractions were defined for
the creation of rules as follows:

1) Zeek is used on the top of SIEM to monitor live
traffic and signature-based anomaly detection.

2) Detection rules for matching an event (network traf-
fic or endpoint event) with pre-defined conditions.

3) Correlation rules for correlating low-level rules
which may hold the potential to evolve into an APT
alarm.

A. Framework
This section includes details of our proposed approach.

Figure 1 demonstrates the high-level architectural design
of the employed SIEM for the purpose of APT detection.

Figure 1. High-Level Architectural Design of the SIEM

Our proposed framework is embedded in a research-
based SIEM. The Elastic stack (Elasticsearch, Logstash,
Kibana, ELK) [19] is the backend of our SIEM for raw
data storage, Visualization and parsing. The detection
engine is a component for the execution of detection rules
and the creation of alerts. Low-level alerts are stored in
the Alert DB, a database for that specific purpose. The
data provider of detection rules is Zeek® [20] which is an
open-source software network analysis framework. Wazuh
[21] is an open-source and enterprise-ready security mon-
itoring solution for servers or devices, which can receive
logs in text, windows event logs and Syslog formats. It
includes around 2000 rules which are enriched to contain
MITRE Technique IDs. The normalizer is a component
for converting and matching alerts from Wazuh to the
Elastic Common Schema (ECS) format [22]. Finally, the
correlation engine correlates alerts utilizing correlation
rules and storing them in an Alarm DB. A secondary
responsibility of the Correlation Engine is to generate
Tickets when the incremental risk of correlated alerts
breaches a threshold level, marking them as suspicious
alarms.

The technological toolstack is illustrated in Figure 2
for better clarity.

Figure 2. Technology tool stack of propsed architecture

B. Rules
Each rule consists of condition(s), a schedule, a risk

score and tag(s). When conditions are met, alerts will
be created. A Rule condition always consists of a query
(simple or aggregation). For aggregation queries (e.g.,
number of reached ports based on distinct source and
destination IP addresses), a threshold value also can be
set. Therefore, a rule first executes the query and then
compares the result to the threshold value. A schedule
defines a time interval between each run of a rule. There
are four different levels of tags in our system as follows:

1) MITRE ATT&CK tactics and techniques tags: Ta-
ble I demonstrates seven potential steps of APT
with their corresponding MITRE tactic identification
numbers.

2) Protocol and application tag: It defines an application
or a protocol which is used as attack vector.

3) Asset identifier tag: It provides information about the
asset (e.g., IP address, host name) which technical
resilience measures should be applied.

4) Affected asset tag: It provides asset information to
the correlation.

C. Alert
An alert is a JSON object which includes information

about the rule conditions, which caused the match and
triggered an alert such as source/destination IP/Port num-
ber, the total number of sent/received bytes or cardinally
of a data attribute. An alert also keeps information about
timestamp, risk scores and associated tags.

D. Correlation of Alerts
The correlation engine correlates alerts with the same

identifier tag on a regular basis (it is adjustable). For
example, if there are two alerts with the same IP address
(source/destination) and different MITRE ATT&CK tags,
the correlation engine combines those alerts together and
creates an alarm with an updated risk score. Finally, the
Correlation Engine checks the risk score of every alarm
in the last T minutes. If the corresponding risk score of
an alarm in the Alarm DB exceeds a threshold value, a
Ticket will be created for it. Subsequently, the system
notifies users (e.g., security staff) about the Ticket. APT
detection rules are specific rules that check if there is a
combination of MITRE tags in an alarm comparable to the



APT kill-chain. For example, an alarm, and its associated
ticket, will be generated for a host with both pass-the-hash
(T1550.002) and domain account discovery (T1087.002)
alerts.

E. Ticket

A ticket contains the summary of an incident including
an alarm, the entire timeline of the correlated alerts,
corresponding timestamp of ticket, the risk score of the in-
cident, APT attack likelihood score and relative response
playbooks.

F. Playbook

A playbook maintains a set of predefined, technical
and/or organizational, tasks which should be performed
by security staff to respond to, withstand and recover from
a cyber incident. Playbooks are defined in MITRE tactic,
technique and sub-technique levels. We defined an extra
tag to enable a finer granularity level for some MITRE
sub-techniques which address general applications or pro-
tocols such as Exploit Public-Facing Application (T1190).
Here our application tag determines whether, for in-
stance, SSH-Initial-Access, SMB-Initial-Access, SNMP-
Initial-Access or SQL-Initial-Access playbook should be
attached to the Ticket. The details of playbooks for
various incidents are beyond the scope of this paper.

G. Threat Model and Attack Scenario

We model our adversary as an APT attacker, who
also exhibits living-of-the-land (LOL) behavior. Table I
summarizes the attack stages that we consider:

Table I. ATTACK STAGES OF THE END-TO-END ATTACK

Attack Stage Description
Initial Access
(tag: TA0001)

The attacker gains an initial foothold in
the target network.

Reconnaissance
(tag: TA0043)

The attacker explores their target envi-
ronment and identifies assets, network
topology and system information from
OSINT sources before initial access.

Command and Control
(tag: TA0011)

A communication channel between the
compromised infrastructure and the at-
tacker’s infrastructure is established.

Discovery
(tag: TA0007)

Once inside the target environment, the
attacker attempts to explore and iden-
tify further targets, vulnerabilities, and
valuable assets.

Privilege Escalation
(tag: TA0004)

The attacker attempts to elevate
their access privileges by gaining
root/administrator privileges, or other.

Lateral Movement
(tag: TA0008)

The attacker moves inside the target
network. Both north-south and east-
west movement is considered.

Exfiltration and Impact
(tag:TA0043/TA0040)

The attacker proceeds to accomplish
their objective by either exfiltrating the
gathered information, or producing a
malicious effect.

Table I also guides the process of scenario creation.
We defined two requirements to safeguard the rigor of
this work as follows:

1) The attack scenario should be a realistic representa-
tion of actual APT behavior, which encapsulates the
entirety of the stage space in some form and includes
LOL tactics.

2) The attack scenario should be fully testable with
the MITRE CALDERA framework and its publicly
available plug-ins.

After analysing multiple AttackIQ [23] posts on realis-
tic adversary emulation of actual past use cases, we con-
structed an attack scenario against a hypothetical company
with the following steps:

1) A spearfishing campaign is launched targeting spe-
cific users of the company, who had been previously
profiled by the attacker by crawling through social
media. A malicious attachment is included in the
form of an MS Word file. As a result, an initial
foothold is established.

2) The deployed payload checks in with a pre-existing
C2 infrastructure and maintains a constant encrypted
channel, using HTTPS.

3) Once checked in, the attacker manually enters LOL
commands to explore the blue infrastructure, map the
network and discover any useful data for exfiltration.

4) If the firewall separating the protected network seg-
ment is found, the attacker changes their strategy and
Masquerades as a domain host account.

5) If the LOL commands do not reveal the protected
segment and the firewall is not identified, the attacker
scans the network with nmap.

6) At this stage, the Discovery phase is completed
and the attacker attempts to move laterally to the
protected segment. They use a variety of techniques
to achieve that; in particular exploiting the SMB or
WMI to deliver the backdoor to those hosts, or trying
to directly connect with them with RDP or SSH.

7) Once access to the DC is achieved, they search for
valuable data for exfiltration, alter the DC Access
policies to either maintain persistence or disrupt
the operation of the Active Directory, or decide to
ultimately wipe the discs.

8) Once access to the objective target is achieved, they
either decide to wipe the discs to rend the host
unusable, or discover the databases and manually
change their entries.

IV. EXPERIMENTAL METHODOLOGY

This section includes rules to detect different steps
of attack scenario presented in section III-G and the
correlation rules which were used to create a ticket with
an APT likelihood score.

a) Drive-by Compromise (T1189):
• Detection of DNS rebinding-a malicious webpage

utilize XSS vulnerability of user’s browser to ma-

https://controlcompass.github.io/



nipulate resolution of domain names and access an
internal service behind DMZ.

• Detection of a host which frequently makes DNS
requests to suspicious dynamic domains.

• Detection of software updates from suspicious loca-
tions.
b) Drive-by Compromise (T1189):

• Detection of DNS rebinding-a malicious webpage
utilize XSS vulnerability of user’s browser to ma-
nipulate resolution of domain names and access an
internal service behind DMZ.

• Detection of a host which frequently makes DNS
requests to suspicious dynamic domains.

• Detection of software updates from suspicious loca-
tions.
c) Exploit Public-Facing Application (T1190):

• Detection of Remote Procedure Call (RPC) from/to
Internet.

• Detection of Remote Desktop Protocol (RDP)
from/to Internet.

• Detection of SMB (Windows File Sharing) activity
to Internet.

• Detection of Virtual Network Computing (VNC)
from Internet.

• Detection of Telnet port activity.
• Detection of Zoombombing-starting a meeting with-

out a passcode-.
• Detection of suspicious commands executed via a

web server.
• Detection of the Proxyshell attack on Microsoft

Exchange server to access server side or internal
network services behind DMZ.

• Detection of web servers that spawn shell processes
(e.g., ’\cmd.exe’, ’\nslookup.exe’).
d) External Remote Services (T1133):

• Detection of unexpected child processes of dns.exe
(is the process of Windows DNS server service).

• Detection of SSL-VPN connection which the URL
field of the related event matches the known IoC for
Fortigate-SSL-VPN vulnerabilities.

• Detection of a running Chrome VPN extension
that registers to a malicious VPN repository
(e.g., gkojfkhlekighikafcpjkiklfbnlmeio,
Hola Free VPN, under the folder Soft-
ware\Wow6432Node\Google\Chrome\Extensions.
e) Hardware Additions (T1200):

• Detection of a rogue DHCP server in internal net-
work.

• Detection of ARP Poisoning
• Detection of a port mirroring activity on Cisco

network devices.
• Detection of a USB plugin in Windows.

https://www.fortiguard.com/psirt/FG-IR-18-384

f) Phishing (T1566):
• Detection of an email with known suspicious sender

IP address/domain name.
• Detection of an email attachment with known mali-

cious hash.
• Detection of ‘outlook.exe‘process which starts a sus-

piciois child process (e.g.,netsh.ex, ipconfig.exe ).
• Detection of a HTML file which was opened with a

browser process within 5 minutes after downloading.
• Detection of a successful commands and scripts

execution by AWS systems manager.
• Detection of a Windows scripting process

(cscript.exe or wscript.exe) that executes a
PowerShell script.

• Detection of ‘outlook.exe‘process which starts
asuspiciois child process (e.g.,PowerShell.exe,
cscript.exe).
g) Valid Account (T1078):

• Detection of excessive number of failed login at-
tempts from public IP.

• Detection of a login attempt to a disabled account.
• Detection of a successful login from unusual

countries-defined by a list-.
• Detection of a successful login at unusual time.
• Detection of a user login from various locations in

short period of time.
• Detection of windows machine password reset by

PowerShell on a remote computer.
• Detection of unusual user login.

h) Trusted Relationship (T1199):
• It requires rules to check activities of second or third-

party external providers who is granted the elevated
access.
i) Replication Through Removable Media (T1091):

• Detection of external disk drive or USB usage.
Considering attack simulation for the experiments, we

opt for the MITRE CALDERA framework [24], as it
fulfills the following requirements: i) it is a red teaming
emulator, which is a sufficiently granular approximation
of real APT activity, ii) it offers a transparent and repeat-
able experimentation methodology, as only the publicly
available abilities are considered, and iii) it is open source
and aligns well with our adopted attack pattern model, the
MITRE ATT&CK model.

V. CONCLUSIONS

This paper presents a rule-based APT detection scheme,
which correlates atomic intrusion detection alerts to form
a high level APT intrusion alarm. Our detection infrastruc-
ture consists of the ELK stack as basis for data storage,
processing and visualization, Zeek and Wazuh for host
and network source data collection and an event corre-
lation engine. The Control Validation Compass tool pro-
vided the basis for our detection ruleset. Then, informed



by the current state of the APT landscape, we constructed
an attack scenario, testable with the public abilities of the
MITRE CALDERA framework and developed a simple
network testbed on Proxmox.
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